

 Navigation

 	
 index

 	Roundware latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/roundware/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/roundware/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Roundware latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 source/docs/api/request_stream.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “request_stream”
sidebar_current: “api-request-stream”

request_stream

Generates an audio stream unique to the client based on parameters sent in request
and project audio settings (speakers and audiotracks).

Example Call:

http://localhost:8888/api/1/?operation=request_stream&session_id=1&latitude=1&longitude=1&tags=1,2,3

Parameters (some optional*):

		session_id

		latitude*

		longitude*

		tags*

		audio_stream_bitrate*

session_id

Each stream is unique to a session, so session_id is used to set a stream identifier for future
stream modification via modify_stream.

latitude

OPTIONAL: initial latitude server uses to create stream mix. Typically this is soon modified
by a modify_stream API call

longitude

OPTIONAL: initial longitude server uses to create stream mix. Typically this is soon modified
by a modify_stream API call

tags

OPTIONAL: initial tags used to filter available assets. If non provided, ALL tags for project are
assumed to be available.

audio_stream_bitrate

OPTIONAL: Valid options are: 64, 96, 112, 128, 160, 192, 256 and 320. If parameter is passed, the stream will be generated with this bitrate. If no parameter is passed stream will be generated with a bitrate determined by rw_project.audio_stream_bitrate

Response

JSON response is a stream mountpoint that can be used by any client audio streamer to play the audio.

Example Response

{
 "stream_url": "http://rw.roundware.org:8000/stream1.mp3"
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/api/log_event.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “log_event”
sidebar_current: “api-log-event”

log_event

Used to indicate to the server when the user has performed and action that we want to log in the database, including start_record, stop_record, start_stream, stop_stream, start_upload, stop_upload. Roundware uses this mechanism to log all client/server interactions - anonymously - in order to analyze usage patterns and better understand how participants are experiencing the system.

All parameter data is simply passed through to the corresponding fields in the event object.

In addition to log_event calls, events can be logged directly by the server as a result of another action.

Example Call:

http://localhost:8888/api/1/?operation=log_event&session_id=1&event_type=modify_stream&latitude=1&longitude=1&tags=1,2,3

Parameters (some optional*):

		session_id

		event_type

		latitude*

		longitude*

		client_time

		tags*

		data*

session_id

Events are grouped by session_id in order to report and analyze data on a session-by-session basis.

event_type

Records what type of action/event has occurred. This is an unrestricted field, but the pirmary ones are:
start_record, stop_record, start_stream, stop_stream, start_upload, stop_upload, client_error,
cleanup_session, heartbeat, modify_stream, start_session.

latitude

OPTIONAL: helpful in particular for plotting Session Maps

longitude

OPTIONAL: helpful in particular for plotting Session Maps

client_time

OPTIONAL: Useful to track differnces between client time and server time as indicated with timestamp

tags

OPTIONAL: helpful in tandem with modify_stream event_types for logging which tags users are most interested in hearing

data

OPTIONAL: Used to store any extranneous data provided by the client or server pertaining to a particular
event. The most common use is to contain an error message for events of event_type=client_error.

Response

JSON response is success boolean, indicating that the event was properly logged in the database

Example Response

{"success": true}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/api/vote_asset.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “vote_asset”
sidebar_current: “api-vote-asset”

vote_asset

Used to collect user-generated data associated with specific assets. Most common uses
are to allow users to “like” an asset or “flag” an asset for review.

Example Call:

http://localhost:8888/api/1/?operation=vote_asset&asset_id=234&session_id=1&vote_type=like

Parameters (some optional*):

		vote_type

		asset_id

		session_id

		value*

vote_type

This is an unrestricted field allowing different projects to create flexible voting scenarios. Typically,
vote_types are ‘like’ or ‘flag’.

asset_id

Indicates which asset is being voted upon.

session_id

Allows for proper recording of a related event for full session tracking

value

OPTIONAL: Allows for the collection of an additional piece of information related to the vote. For example,
if there was a vote_type of ‘rating’, one could use the value field to contain a numeric value for the rating
i.e. 1-5.

Response

JSON response is success boolean, indicating that the vote was properly received by the server.

Example Response

{"success": true}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/api/get_asset_info.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “get_asset_info”
sidebar_current: “api-get-asset-info”

get_asset_info

Returns useful info about a particular asset. Originally developed to assist with asset voting
and has been in large part replaced by other API calls and the REST API.

Example Call:

http://localhost:8888/api/1/?operation=get_asset_info&session_id=1&asset_id=234

Parameters (some optional*):

		asset_id

		session_id

asset_id

Indicate which asset is of interest.

session_id

This may not be necessary, but is currently programatically required.

Response

JSON containing asset_id, created datetime and audiolength.

Example Response

{
 "asset_id": 234,
 "created": "2012-03-08T21:14:20",
 "duraton_in_ms": 2507
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

source/docs/api/play_asset_in_stream.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “play_asset_in_stream”
sidebar_current: “api-play-asset-in-stream”

play_asset_in_stream

Allows client to control what asset is played next in the stream. Useful for replaying assets or
otherwise exerting more direct control over the content of the stream.

When this call is received the asset currently playing in the stream in question is faded out and
the new one is played thereafter.

Example Call:

http://localhost:8888/api/1/?operation=play_asset_in_stream&session_id=1&asset_id=32&delay=1000

Parameters (some optional*):

		session_id

		asset_id

		delay*

session_id

Indicates which stream the operation should be performed on.

asset_id

Indicates which asset should be played next.

delay

OPTIONAL: adds a delay time (in ms) between when the previous asset fades out and the newly
indicated asset begins playing. [this may not be functioning currently]

Response

JSON response is success boolean, indicating that the operation was received by the server.

Example Response

{"success": true}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

source/docs/api/modify_stream.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “modify_stream”
sidebar_current: “api-modify-stream”

modify_stream

Modifies an existing stream per new tag filters and/or location filters.

If tag filters are included, Roundware will refresh the available recordings per the new tags. If only latitude and longitude are included, available recordings will not be entirely refreshed so that recordings that have already been played will not get played again until the user leaves and re-enters the recording’s range.

Roundware playback is based on tag categories. Each asset in a project should be assigned one tag from each tag category in a typical situation. If modify_stream is sent with any tags from a particular tag category, Roundware assumes that the category in question is active and there will not return assets that don’t contain any tags from this category.

Example Call:

http://localhost:8888/api/1/?operation=modify_stream&session_id=1&latitude=1&longitude=1&tags=1,2,3

Parameters (some optional*):

		session_id

		latitude*

		longitude*

		tags*

session_id

session_id is used to determine which stream to modify.

latitude

OPTIONAL: in combination with longitude, causes stream audio to be updated for the new location

longitude

OPTIONAL: in combination with latitude, causes stream audio to be updated for the new location

tags

OPTIONAL: causes available assets for stream to be filtered by new set of tags

Response

JSON response is success boolean

Example Response

{"success": true}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/api/get_config.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “get_config”
sidebar_current: “api-get-config”

get_config

Example Call:

http://localhost:8888/api/1/?operation=get_config&project_id=1

This is typically the first command a Roundware client sends to the Roundware server.
It establishes a new session and supplies configuration data to the client.

Parameters (some optional*):

		project_id

		device_id*

		client_type*

		client_system*

		language*

project_id

id from the database for the project that the client wishes to interact with and
for which it is built.

device_id

OPTIONAL: Roundware assigns a device_id to each client device in order to track repeat usage.
If the client is using Roundware for the first time, no device_id is sent and one is
generated and returned by the server and stored by the client. Once a device has a
device_id, it sends it to the server as a parameter of get_config.

Stored in rw_session.device_id

client_type

OPTIONAL: Examples are iPhone, iPad, Samsung Galaxy S4 etc

Stored in rw_session.client_type

client_system

OPTIONAL: For example, Android 4.1.2, iPhone OS-7.0.4 etc

Stored in rw_session.client_system

language

OPTIONAL: For localization purposes, each session is assigned a language. This is
sent from the client to the server in the ISO 2-character language code (i.e. ‘en’, ‘fr’, ‘es’ etc).

If no language is sent, default language of ‘en’ is assumed.

Stored in rw_session.language_id

Response

JSON response is broken into sections for device, session, project, server, speakers and audiotracks.
Device and session info is generated in real-time by the server; project, speaker and audiotrack info is
pulled directly from the database.

Example Response

{
 "device": {
 "device_id": "12bf86e6-d84a-4d19-a65a-27860210287f"
 }
 },
 {
 "session": {
 "session_id": 11116
 }
 },
 {
 "project": {
 "audio_format": "mp3",
 "audio_stream_bitrate": "128",
 "demo_stream_enabled": true,
 "demo_stream_message": "This is a test demo stream message!",
 "demo_stream_url": "http://roundware.org:8000/rw_outofrange.mp3",
 "files_url": "http://roundware.org/rw.zip",
 "files_version": "2",
 "geo_listen_enabled": false,
 "geo_speak_enabled": true,
 "legal_agreement": "By clicking below, you agree that any recording you make using this app can be used for any purpose. Thanks and enjoy!",
 "listen_enabled": true,
 "listen_questions_dynamic": false,
 "max_recording_length": 30,
 "out_of_range_message": "Test out of range message",
 "project_id": 1,
 "project_name": "Test Project",
 "recording_radius": 20,
 "reset_tag_defaults_on_startup": true,
 "sharing_message": "Listen to this recording I made with a #roundware project!",
 "sharing_url": "http://roundware.org/r/eid=[id]",
 "speak_enabled": true,
 "speak_questions_dynamic": false
 }
 },
 {
 "server": {
 "version": "2.0"
 }
 },
 {
 "speakers": [
 {
 "activeyn": false,
 "backupuri": "http://roundware.org:8000/rw.mp3",
 "code": "RW",
 "id": 3,
 "latitude": 47.67298126,
 "longitude": -122.36761475,
 "maxdistance": 1000,
 "maxvolume": 1.0,
 "mindistance": 100,
 "minvolume": 0.0,
 "project_id": 1,
 "uri": "http://roundware.org:8000/rw.mp3"
 },
 {
 "activeyn": true,
 "backupuri": "http://roundware.org:8000/rw2.mp3",
 "code": "RW2",
 "id": 6,
 "latitude": 38.8902,
 "longitude": -77.036299999999997,
 "maxdistance": 10000,
 "maxvolume": 0.59999999999999998,
 "mindistance": 1000,
 "minvolume": 0.0,
 "project_id": 1,
 "uri": "http://roundware.org:8000/rw2.mp3"
 }
]
 },
 {
 "audiotracks": [
 {
 "id": 1,
 "maxdeadair": 3000000000.0,
 "maxduration": 180000000000.0,
 "maxfadeintime": 500000000.0,
 "maxfadeouttime": 2000000000.0,
 "maxpanduration": 10000000000.0,
 "maxpanpos": 0.0,
 "maxvolume": 1.0,
 "mindeadair": 1000000000.0,
 "minduration": 180000000000.0,
 "minfadeintime": 100000000.0,
 "minfadeouttime": 100000000.0,
 "minpanduration": 5000000000.0,
 "minpanpos": 0.0,
 "minvolume": 1.0,
 "project_id": 1,
 "repeatrecordings": false
 }
]
 }
]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

source/docs/api/skip_ahead.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “skip_ahead”
sidebar_current: “api-skip-ahead”

skip_ahead

Allows client to tell server to fade out current recording and immediately begin playing the next recording per current filters.
This is useful if you want to offer users the ability to skip past something they are not interested in listening
to.

Example Call:

http://localhost:8888/api/1/?operation=skip_ahead&session_id=1

Parameters (some optional*):

		session_id

session_id

Indicates which stream the operation should be performed on.

Response

JSON response is success boolean, indicating that the operation was received by the server.

Example Response

{"success": true}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

source/docs/api/create_envelope.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “create_envelope”
sidebar_current: “api-create-envelope”

create_envelope

Creates an entry in the envelope table in the db for an asset that is going to be uploaded later. Used primarily for the sharing functionality so that participants can share assets before the file is fully uploaded.

Example Call:

http://localhost:8888/api/1/?operation=create_envelope&session_id=1

Parameters:

		session_id

session_id

Envelopes are tied to their session_id for reporting and analysis purposes.

Response

JSON response is the newly created envelope_id

Example Response

{"envelope_id": 2}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

source/docs/api/move_listener.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “move_listener”
sidebar_current: “api-move-listener”

move_listener

Tells the server that the listener of a particular stream has changed their location. This is only pertinent to geo-listen enabled projects.

Upon receiving the new location, the server performs two tasks:

		adjusts the volumes of all nearby speakers based on the newly calculated proximity of the listener to each speaker

		calculates what audio assets are in range and not already played in the stream. NOTE: if an asset has already been played and a move_listener call is received that is still within range of the asset, it will not be added to nearby_available_recordings. In order to hear the asset again, a move_listener outside of the asset’s range must be received prior to receiving a secondary in-range request.

Example Call:

http://localhost:8888/api/1/?operation=move_listener&session_id=1&latitude=1&longitude=1

Parameters:

		session_id

		latitude

		longitude

session_id

session_id is used to determine which stream to modify.

latitude

in combination with longitude, causes stream audio to be updated for the new location

longitude

in combination with latitude, causes stream audio to be updated for the new location

Response

JSON response is success boolean

Example Response

{"success": true}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

sidebar_current: “overview”

Roundware Documentation

Welcome to the Roundware docs! This site is designed to document Roundware
in a dynamic way as the project evolves. That said, the documentation
is currently in alpha form, at best. We are starting small and growing from
there, so please bear with us.

If you’re interested in helping make these docs better, please grab the code on
Github [https://github.com/hburgund/roundware-server], make your suggested changes,
submit a pull request and we’ll be glad to incorporate the improvements.

Thanks and enjoy!

-the Roundware team [http://roundware.org/team]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/admin/project.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Admin - Project”
sidebar_current: “admin-project”

Project Admin

 DEFINITION: The highest level of segmentation/grouping for all RW data. One RW instance can run many projects simultaneously, governed by CPU, bandwidth and memory resources. Typically clients, mobile or web, are project-specific.

All projects in a RW installation are listed in the Project List view with their key data:

[image: Project List]

Click the Project id of the Project you want to view and edit to open the Project Detail view. All Project fields are
detailed on the Project setup page.

[image: Project Detail]

NEXT: asset

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

source/docs/web/dashboard.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Dashboard”
sidebar_current: “web-dashboard”

Dashboard

The Roundware web client functions natively in modern HTML browsers. Efforts have been made to
use standard HTML5, CSS3 and JavaScript only, but at present, the only reasonably accessible way
to record audio through the browser is to use Flash.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		Roundware latest documentation »

Roundware Documentation

This is the repository for the Roundware Documentation website [http://roundware.org/docs].

This is a Middleman [http://middlemanapp.com] project, which builds a static
site from these source files.

Contributions Welcome!

If you find a typo or you feel like you can improve the HTML, CSS, or
JavaScript, we welcome contributions. Feel free to open issues or pull
requests like any normal GitHub project, and we’ll merge it in.

This documentation framework is shamelessly ripped off from the amazing
Vagrant docs [http://docs.vagrantup.com]. We searched for ages for the
right balance between good looks, easy navigability, convenient updating
capability and general flexiblity in a doc system and this hits all those marks.

Thank you for sharing, wonderful Vagrant people!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/admin/authentication.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Admin - Authentication”
sidebar_current: “admin-authentication”

Users and Groups

Roundware uses Django’s built-in authentication system. You can create Users and Groups and assign different levels
of access to the models via the Admin. Authentication is accessed from the Admin home screen:

[image: Authentication Home]

Users

All Users in the system are listed:

[image: User List]

Editing User data and creating new Users is done from the User detail screen:

[image: User Detail]

Groups

Groups contain Users and define a set of privileges. There are no default Groups setup in Roundware,
but depending on your circumstances, they can be advantageous. To add a new Group, click Add Group,
name the new group and select the privileges for that Group.

[image: Group Detail]

NEXT: Object Permissions

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/web/listen_map.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Listen Map”
sidebar_current: “web-listen-map”

Listen Map

The Roundware web client functions natively in modern HTML browsers. Efforts have been made to
use standard HTML5, CSS3 and JavaScript only, but at present, the only reasonably accessible way
to record audio through the browser is to use Flash.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/web/listen.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Listen”
sidebar_current: “web-listen”

Listen

The Roundware web client functions natively in modern HTML browsers. Efforts have been made to
use standard HTML5, CSS3 and JavaScript only, but at present, the only reasonably accessible way
to record audio through the browser is to use Flash.

This section is a work in progress; please forgive its current incompleteness.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/web/share.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Share”
sidebar_current: “web-share”

Sharing

The Roundware web client functions natively in modern HTML browsers. Efforts have been made to
use standard HTML5, CSS3 and JavaScript only, but at present, the only reasonably accessible way
to record audio through the browser is to use Flash.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/admin/audiotrack.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Admin - Audiotracks”
sidebar_current: “admin-audiotrack”

Audiotrack Admin

 DEFINITION: A linear assemblage of audio assets and silence (‘dead air’) which dynamically forms part of each stream by incorporating audio assets into the stream. There can be multiple audiotracks for each project and they determine how many audio assets can play simultaneously.

All projects must have at least one Audiotrack in order to add assets to streams.

[image: Audiotrack List]

Click the Audiotrack id of the Audiotrack you want to view and edit to open the Audiotrack Detail view. All Audiotrack fields are
detailed on the Audiotrack setup page. Duration values are in nanoseconds, so get used to lots of zeros!

[image: Audiotrack Detail]

NEXT: notifications

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/web/speak.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Speak”
sidebar_current: “web-speak”

Speak

The Roundware web client functions natively in modern HTML browsers. Efforts have been made to
use standard HTML5, CSS3 and JavaScript only, but at present, the only reasonably accessible way
to record audio through the browser is to use Flash.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/admin/asset.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Admin - Assets”
sidebar_current: “admin-asset”

Asset Admin

 DEFINITION: An individual piece of media contributed by a user or administrator. Roundware currently handles audio, photo and text assets and will soon handle video assets as well. Assets are assigned many pieces of metadata, including a project, tags, location, and others.

Assets are listed in the Project List view with their key data. You can playback audio assets directly from the list view.

[image: Asset List]

Certain parameters are conveniently editable en-masse from the list view itself: Submitted, Weight, Volume.
Just update for as many assets as you want and hit Save for the changes to take effect.

Media link url opens a new browser window with the asset itself contained, whether it be audio, image or text. Roundware stores
all assets in a publicly accessible directory http://yourserver/rwmedia.

Click the Asset id of the Asset you want to view and edit to open the Asset Detail view. All Project fields are
detailed on the Asset setup page.

[image: Asset Detail]

It is not currently possible to change the asset file associated with an asset record via the admin, but we hope this functionality will be
available shortly.

NEXT: tags

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/web/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Web Client”
sidebar_current: “web”

Web Client

The Roundware web client functions natively in modern HTML browsers. Efforts have been made to
use standard HTML5, CSS3 and JavaScript only, but at present, the only reasonably accessible way
to record audio through the browser is to use Flash.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/admin/notifications.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Admin - Notifications”
sidebar_current: “admin-notifications”

Notifications Admin

 DEFINITION: Emails messages sent to specified addresses triggered by activity on a particular model. The most common
 notification is triggered when a new asset is created.

Notifications are a separate custom Django App and are therefore accessed from the top level of the Django admin:

[image: Home Notifications]

Click Model Notifications to open the app admin. Then click Add model notification to create a new notification:

[image: Notification Detail]

Currently, the only model for which notifications can be created is the asset model. The system is extensible,
so additional models can be added in the future as the need presents itself.

NEXT: users and groups

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/web/voice_map.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Voice Map”
sidebar_current: “web-voice-map”

Voice Map

The Roundware web client functions natively in modern HTML browsers. Efforts have been made to
use standard HTML5, CSS3 and JavaScript only, but at present, the only reasonably accessible way
to record audio through the browser is to use Flash.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Roundware latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/admin/permissions.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Admin - Object Permissions”
sidebar_current: “admin-permissions”

Object Permissions Admin

Object permissions allow Roundware instances with more than one project to restrict access to data on a
project-by-project basis for each User. This is very handy if each project has a different administrator
and the data should not be shared.

To access Object permissions, navigate to the project you want to set permissions for and click the
Object permissions button:

[image: Object permissions]

You can assign Users or Groups permissions to the project:

[image: Object permissions]

Type a User’s name in the User identification form field and click Manage User to set permissions for
that User for the Project selected.

[image: Object permissions]

Groups can be setup similarly.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/web/session_map.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Session Map”
sidebar_current: “web-session-map”

Session Map

The Roundware web client functions natively in modern HTML browsers. Efforts have been made to
use standard HTML5, CSS3 and JavaScript only, but at present, the only reasonably accessible way
to record audio through the browser is to use Flash.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/admin/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Admin”
sidebar_current: “admin”

Roundware Admin

Roundware uses the Django Admin with some customizations as the core method for the setup and administration of Roundware projects. We use
the django-admin-bootstrapped [https://github.com/django-admin-bootstrapped/django-admin-bootstrapped] app to update the feel and flexibility of the admin.

The base Roundware install comes with a test project setup and ready to test the installation and with which to experiment.

This section will explain the basic Admin features and how to create and manage a customized Roundware project to suit your needs.
The Admin home screen displays all the available models, but this guide will focus on the primary ones.

Admin Home Screen

[image: Admin Home]

Refer to the Setup documentation for more info on the individual fields in each model.

General Admin Tips

Items in BOLD are required fields.

Navigation

The Admin employs a basic breadcrumb-type navigation system at the top of each screen. Each section is a link that
takes you back to the specified previous location within the Admin.

[image: Basic Navigation]

List Filters

Many of the Admin list views have filtering capabilities, accessible via a dropdown in the upper right of the view.

[image: List Filters]

Localized Strings

Localized strings can be added directly from other model admin screens. Look for the green plus:

[image: Localized String List]

Clicking the green plus opens another window where a new localized string can be created and assigned to one of the available languages
in the installation.

[image: Localized String Detail]

Please use the sidebar links to explore the different Admin screens, starting with project

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/why-roundware/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Why Roundware?”
sidebar_current: “why”

Why Roundware?

Roundware was initially developed in 2007 (pre-smartphone apps, OMG!!) by sound artist Halsey Burgund [http://halseyburgund.com] as a technical platform
for him to realize his location-sensitive, contributory audio installations.
Over the years, it has evolved to incorporate more functionality as well as becoming
easier to administrate and more robust.

Roundware features several core pieces of functionality:

		create a seamless location-sensitive layer of audio comprised of musical elements and participant commentary in any geographic locale

		serve individualized audio streams to users in a flexible non-linear way based on participant inputs

		collect audio from participants via iOS, Android and web-based devices

		tag collected audio with location information as well as any additional project-based metadata such as age, gender or occupation

		organize an ever-growing collection of participant contributed audio information

Roundware continues to be used for audio art installations around the world, but is
also being used by cultural organizations as a new, more modern way to interact with their audiences.

This said, Roundware is not audio tour software! In some ways, Roundware is the anti-audio tour platform.

		Audio tours are traditionally about a single authoritative voice whereas Roundware is about a multitude of
voices, opinions and ideas mixed together.

		Audio tours tend to be linear experiences; Roundware is based on a non-linear, flexible, participant-driven, immersive experience.

		Roundware is designed for sculpting an aesthetic experience, not for explicitly delivering educational or interpretive information.

We hope that Roundware contributes in some way to whatever it is that eventually replaces
the museum audio tour. Please jump in and contribute!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/admin/speaker.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Admin - Speakers”
sidebar_current: “admin-speaker”

Speaker Admin

 DEFINITION: A geo-located object that continuously broadcasts audio within a specified area. Each project
 must have at least one speaker.

Active status, min/max distance and min/max volume can be edited in place from the list view:

[image: Speaker List]

Click the Speaker id of the Speaker you want to view and edit to open the Speaker Detail view. All Speaker fields are
detailed on the Speaker setup page.

Speaker location and minimum and maximum distances can all be adjusted graphically using the embedded map.
Addresses can be typed into the search box to quickly find a location as well.

[image: Speaker Detail]

NEXT: audiotrack

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/tags/relationships.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Tag Relationships”
sidebar_current: “tags-relationships”

Tag Relationships

Tag relationships are used to control what tags are presented to the user based on their previous tag selections. For example, if I have a set of questions I only want to present to male participants and another to female participants, I could require the gender tag category to be selected first and then present only the questions related to the user’s selection.

This is a very handy and power feature that allows for much more customization of the user experience as well as specificity of asset collection.

Tag relationships are handled with a self-referential many-to-many field in the tag object.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/admin/tag.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Admin - Tags”
sidebar_current: “admin-tag”

Tags Admin

 DEFINITION: Metadata used to describe assets. Tags are arranged by tag category. For example, the tags within the 'gender' tag category could be 'male' and 'female'. Tags are very flexible and allow for collecting many different types of metadata to be used for filtering the assets at a later time.

A full explanation of tag setup and fields can be found on the Tag Setup page and should be
reviewed and understood before these Tag Admin instructions will be useful.

Tag Category Add/Edit

List view:

[image: Tag Category List]

Tag Add/Edit

List view:

[image: Tag List]

Open individual tag to edit parameters.

Batch Add Tags

Because tags are grouped by tag category, there is a convenient facility for adding
multiple tags all within the same tag category. This is accessed via the Batch create tags
button on the tag list view.

Select a tag category and then add as many tags as you want for that category all at once by
entering their pertinent details.

[image: Batch Tag Detail]

Master UI Add/Edit

List view:

[image: Master UI List]

Detail view:

[image: Master UI Detail]

UI Mapping Add/Edit

Activation, ordering (Index) and Default can be edited in place in the list view:

[image: UI Mapping List]

NEXT: speakers

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/terminology/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Terminology”
sidebar_current: “terminology”

Roundware Terminology

These are the basic conceptual building blocks of Roundware.

Project

The highest level of segmentation/grouping for all RW data. One RW instance can run many projects simultaneously, governed by CPU, bandwidth and memory resources.

Session

A client server connection established when the client is started and terminated when the client app is closed. session_id is established by the server and is used to keep track of multiple simultaneous sessions.

Asset

An individual piece of media contributed by a user. Roundware currently handles audio, photo and text assets and will soon handle video assets as well.

Envelope

A collection of assets and tags submitted by a user/participant. Envelopes can contain multiple assets (several audio recordings, audio and photo, etc) collected at the same time by the same user.

Tag

Metadata used to describe assets. Tags are arranged by tag category. For example, the tags within the ‘gender’ tag category could be
‘male’ and ‘female’. Tags are very flexible and allow for collecting many different types of metadata to be used for filtering the assets at a later time.

Speaker

A geo-located object that broadcasts continuous audio over a certain area determined and attenuated logarithmically by radius.

Audiotrack

A linear assemblage of audio assets and silence (‘dead air’) which dynamically forms part of each stream by incorporating audio assets into the stream. There can be multiple audiotracks for each project which determine how many simultaneous audio assets can ever occur.

Stream

A unique session-based audio stream generated by RW based on the evolving filters supplied by a particular client; streams consist of a summation of speaker audio and asset audio (per the audiotracks)

Operation

A variable in API calls which determines what the server is supposed to do with the supplied variables (ie. get_config, request_stream, modify_stream, log_event etc)

Event

A record of each time a client pings the server with an API call. All events are tagged with an event_type such as start_session, start_listen, upload_recording, etc. Event data provides the core source for all RW system analysis.

Future: Zone

A geographic region defined by radius (meters) and center point (latitude, longitude) or by a polygon (list of lat/lon of vertices, in order). Different elements can be assigned to zones such as speakers, envelopes, assets, question tags, other tags etc. Once we incorporate
geo-django and migrate to a database that handles GIS data more elegantly, zones will be easier to implement.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/api/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “API”
sidebar_current: “api”

API

Roundware clients communicate with the Roundware server using an HTTP web-service.
Most requests are GET other than media uploads which attach the binary file using a POST
request.

All API calls include an operation GET parameter to indicate which action is desired.

All server responses are in JSON format.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/android/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Android Client”
sidebar_current: “android”

Android Client

The Roundware Android framework can be found in a separate git repository. In a different
repository, there is a generic example app which shows how the framework is
implemented in the context of an Android app.

In an attempt to create code that is re-usable across clients, the tag-related screens
for both the Listen and Speak flows are webviews. These screens are built dynamically
based on the contents of the JSON response to the get_tags API call and are therefore
very flexible with server changes, not app changes.

Additionally, the webview files themselves
are downloaded upon app startup (only if a new version is available), so they are likewise
updateable without any changes to the app. The goal is to keep things as flexible as possible
without having to resubmit the app to the Play Store any more than necessary.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/installation/manual.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Manual Install”
sidebar_current: “installation-manual”

Installing Roundware

Overview

Roundware is a client-server system. The server runs on Ubuntu Linux, version 12.04 LTS Precise Pangolin and clients are available for iOS, Android and HTML5 browsers. This document outlines the steps required to setup a Roundware server with a basic installation that can be accessed through any of these clients.
For more information about Roundware functionalities and projects that use the platform, please check out:
roundware.org [http://roundware.org]

Requirements

In order to successfully install Roundware, the following requirements must be met:

		server running Ubuntu 12.04 LTS Precise Pangolin

		root access

		familiarity with Apache, MYSQL, and icecast

Unless stated otherwise, all scripts referred to in this guide reside in the root directory of the Roundware distribution:
roundware-server

In order to successfully install all required packages, make sure /etc/apt/sources.list has multiverse repositories enabled.

Pre-requisites

Roundware requires many packages to support streaming and management. Run the INSTALL-prerequisites script to install them:

user@machine:~/roundware-server$ sh INSTALL-prereqs

All packages contained therein MUST be installed successfully to run Roundware fully.

Icecast

Roundware uses Icecast to stream audio, much like internet radio stations. After installation, Icecast requires some basic configuration to function properly with Roundware. In certain instances, icecast2 prompts during the install process for the hostname and passwords. Hostname should be localhost.

Some configuration changes are required to the basic Icecast configuration, and they must be in sync with the configured values for Roundware. These files must be edited as superuser (sudo). Sample icecast config files are included in the distribution in the roundware-server/files directory.

First, you’ll edit the base icecast config:

user@machine:$ sudo vim /etc/default/icecast2

Set/verify the enable value to true in the last line of this file: ENABLE=true

Next, you’ll edit the base icecast config:

user@machine:$ sudo vim /etc/icecast2/icecast.xml

Set passwords (in 3 places) to correspond with what is in the Roundware default configuration, currently set in roundwared/settings.py. You may have already been prompted for these passwords during the icecast install process, in which case you should simply verify that they are in the xml. The default config has the password ‘roundice’. Also, set the max number of sources to 200.

<sources>200</sources>

<authentication>
 <!-- Sources log in with username 'source' -->
 <source-password>rwice</source-password>
 <!-- Relays log in username 'relay' -->
 <relay-password>rwice</relay-password>

 <!-- Admin logs in with the username given below -->
 <admin-user>admin</admin-user>
 <admin-password>rwice</admin-password>
</authentication>

Restart Icecast for changes to take effect:

user@machine:$ sudo /etc/init.d/icecast2 restart

To verify that icecast is up and running go to http://<your.roundware.host>:8000 to see the default icecast admin page.

MYSQL

Roundware uses MYSQL and requires a dedicated database with a dedicated user. Create the default values for this user by running the INSTALL-mysql script. You’ll be prompted 3 times for your mysql root password, which you configured during installation.

user@machine:~/roundware-server$ sh INSTALL-mysql

You may change the database name and account info to fit your needs, but if you do, be sure to change the Roundware config /etc/roundware/rw and the django settings roundware-server/roundware/settings.py to reflect your changes.

Apache

Apache must be configured to forward requests to Roundware fastcgi endpoint. A default config is included at roundware-server/files/apache-config-example. If installing on a clean 12.04 machine, this file can simply be copied to the apache configuration directory, though there are several changes that should be made to reflect your environment. Look for the following lines in the apache-config-example, and change them to reflect the location to which you’ve installed Roundware:

DocumentRoot /home/ubuntu/roundware-server/roundware/
FastCGIExternalServer /home/ubuntu/roundware-server/roundware/mysite.fcgi -host 127.0.0.1:3033

Then copy sample config to live location:

user@machine:~/roundware-server$ sudo cp files/apache-config-example /etc/apache2/sites-enabled/000-default

Restart Apache for changes to take effect:

user@machine:$ sudo /etc/init.d/apache2 restart

Roundware Installation

Modify the Roundware install script to reflect your codebase location:

user@machine:~/roundware-server$ vim install_clean_django_rw.sh

Confirm CODE_PATH and DIST_PATH are correct for your system.
Run the INSTALL-roundware script (which calls install_clean_django_rw.sh among other things):

user@machine:~/roundware-server$ sh INSTALL-roundware

Give ownership of the log file created in this script to the user who will be running Roundware:

user@machine: sudo chown [your user] /var/log/roundware

Configure Django for Roundware

Reset the Django database by running the resetDb.sh script:

user@machine:~/roundware-server/roundware$ sh resetDB.sh

Note - this script may prompt for the username and password for your database. If you changed these values from the defaults when creating the Roundware db, the changes must be reflected here.

You’ll be asked if you want to create a superuser like so:

You just installed Django's auth system, which means you don't have any superusers defined.
Would you like to create one now? (yes/no):

Answer yes, and provide the default values for username (‘round’) and password (‘round’). Note that any subsequent changes must be reflected in settings.py. The email address can be anything, and is not currently used.

If you have a fixture data file, you can populate your database with this data by running the django command:

user@machine:~/roundware-server/roundware$ python manage.py loaddata <path_to_fixture>

The base Roundware install package includes a standard SQL file to populate a default database with the basic data you will need to test your installation. That can be installed as such:

user@machine:~/roundware-server$ mysql

Make some edits to the Django settings file, roundware/settings.py:

ANONYMOUS_USER_ID = 0 // change this to the proper id for AnonymousUser in database for Guardian
settings for notifications module - email account from which notifications will be sent
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'email@gmail.com'
EMAIL_HOST_PASSWORD = 'password'
EMAIL_PORT = 587
EMAIL_USE_TLS = True

You are now ready to reset django and run Roundware:

user@machine:~/roundware-server$ sh install_clean_django_rw.sh
user@machine:~/roundware-server/roundware$ sh startFCGI.sh

Open a browser and browse to http://your.roundware.host/admin, and verify you see the django admin page.

Remember, for debugging information, you can check the apache log files:

		/var/log/apache2/access.log

		/var/log/apache2/error.log

as well as the Roundware log:

		/var/log/roundware

Roundware Development

Roundware uses separate pip requirements files and Django settings files for development.
If you are running Roundware as a development server, you should run:

user@machine:pip install -r requirements/dev.txt

to get the additional requirements for development and testing.

You should also edit your ~/.bashrc file (or other method of setting user-wide persistent
environment variables) to add:

export DJANGO_SETTINGS_MODULE=roundware.settings.dev

Note also that you can use a local_settings.py (not in version control) inside
of the roundware/settings/ directory.

Basic Testing

Here are some simple browser tests to see if your Roundware installation is functioning properly (substitute your RW server url):

http://localhost:8888/api/1/?operation=get_config&project_id=1
http://localhost:8888/api/1/?operation=get_tags&session_id=2891
http://localhost:8888/api/1/?operation=request_stream&session_id=2891
http://localhost:8888/api/1/?operation=modify_stream&session_id=2892&tags=3,5,8

The first two should return JSON objects containing information about your Roundware project. The second two will create and then modify an audio stream. You can verify stream creation in the Icecast admin, but of course, the true verification is by listening which can be done in iTunes or in certain browsers.

To run unit and functional tests and see test coverage, you will need the development requirements (see above).
To run tests and get a report of test coverage:

user@machine ~/roundware-server/test.sh

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/ios/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “iOS Client”
sidebar_current: “ios”

iOS Client

The Roundware iOS framework can be found in a separate git repository. It includes
the base framework as well as a generic example app which shows how the framework is
implemented in the context of an iOS app.

In an attempt to create code that is re-usable across clients, the tag-related screens
for both the Listen and Speak flows are webviews. These screens are built dynamically
based on the contents of the JSON response to the get_tags API call and are therefore
very flexible with server changes, not app changes.

Additionally, the webview files themselves
are downloaded upon app startup (only if a new version is available), so they are likewise
updateable without any changes to the app. The goal is to keep things as flexible as possible
without having to resubmit the app to Apple for approval more than absolutely necessary.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/installation/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Installing Roundware”
sidebar_current: “installation”

Installing Roundware

Roundware can be installed in several different ways depending on your needs. We provide a Vagrant [http://vagrantup.com] install which is by far the easiest method, but you can choose to install manually if you want to modify things or get into the details more directly.

After you have your environment setup, we provide a few API tests to make sure all is working properly and to familiarize yourself with the typical set of API calls.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/installation/vagrant.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Vagrant”
sidebar_current: “installation-vagrant”

Vagrant Install

A VagrantFile is included for local development and testing with Vagrant [http://www.vagrantup.com/] and VirtualBox [https://www.virtualbox.org/]. Usage:

user@local-machine:~ $ git clone https://github.com/hburgund/roundware-server.git
user@local-machine:~ $ cd roundware-server
user@local-machine:~/roundware-server $ vagrant up
user@local-machine:~/roundware-server $ vagrant ssh
(roundware)vagrant@roundware-server:~$./runserver.sh

Notes:

		The installation process uses the default vagrant user as project owner.

		The install script relies on the Vagrant default fileshare of host:~/roundware-server to vm:/vagrant for installation and development.

		There are multiple port forwards from the host to the VM:
		VM:80->host:8080 for Apache hosting the demo “live” environment available at http://127.0.0.1:8080/

		VM:8888->host:8888 for the manage.py runserver development webserver available at http://127.0.0.1:8888/

		VM:8000->host:8000 for Icecast.

		Initialize the test Roundware stream at: http://127.0.0.1:8888/api/1/?operation=request_stream&session_id=2891 then access it with an audio stream player at: http://127.0.0.1:8000/stream2891.mp3

		Edit the development environment code on your local machine, then refresh to see the changes reflected in the virtual machine.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/installation/testing.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Testing Roundware”
sidebar_current: “installation-testing”

Testing your Roundware Installation

Overview

After you have installed Roundware, you can run some API calls to test behaviour. A default database is included in the base install so that you will have a fully-functional system with a test project in place immediately. This test project will also serve as an example for the setup of future projects.

The following API calls will mimic a series of requests that will happen during a typical client session. Port 8888 will access the python runserver instance and port 8080 the standard running instance.

get_config

http://localhost:8888/api/1?operation=get_config&project_id=1

get_tags

http://localhost:8888/api/1?operation=get_tags&project_id=1

request_stream

http://localhost:8888/api/1?operation=request_stream&session_id=1&latitude=1&longitude=1

Expected response:

{
 "stream_url": "http://localhost:8000/stream1.mp3"
}

You can listen to the stream in a browser to make sure it is playing back properly. You should hear ambient music and the test recording will play back as part of the stream immediately for between 10 and 30 seconds.

modify_stream

First modify the stream with all available tags within range of the speaker:

http://localhost:8888/api/1?operation=modify_stream&session_id=1&tags=3,4,5,8,9,22

The test asset will play in the stream again, but if you modify the stream without one of the tags assigned to the test asset, the asset will not be played again:

http://localhost:8888/api/1?operation=modify_stream&session_id=1&tags=4,5,8,9,22

move_listener

If you move the listener outside of the range of the speaker, the stream will fade out:

http://localhost:8888/api/1?operation=move_listener&session_id=1&latitude=5&longitude=5

And when you move the listener back within range, the speaker stream will fade back in and the test asset will play again:

http://localhost:8888/api/1?operation=move_listener&session_id=1&latitude=1&longitude=1

create_envelope

In order to upload an asset from a client, you must first create a new envelope to add the asset to:

http://localhost:8888/api/1/?operation=create_envelope&session_id=1

Expected response:

{
 "envelope_id": 2
}

add_asset_to_envelope

With an envelope in hand, you can upload a file and add it to the envelope:

http://localhost:8888/api/1?operation=add_asset_to_envelope&envelope_id=2&latitude=1&longitude=1&tags=3,5,8&mediatype=audio

The audio file itself must be included in a POST part of this request.

We recommend using the Postman app for Chrome [http://www.getpostman.com/] to do the web API testing as it provides a very convenient interface for creating, sending and otherwise managing API requests. It also makes it easy to attach binaries in POST calls for uploading files.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/setup/config.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Config”
sidebar_current: “setup-config”

Roundware Config

All Roundware specific settings are stored in roundware/settings/common.py

You should also go over the parameters in the config just to make sure they correspond to your setup.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/setup/audiotrack.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Audiotrack”
sidebar_current: “setup-audiotrack”

Audiotrack

 DEFINITION: A linear assemblage of audio assets and silence (‘dead air’) which dynamically forms part of each stream by incorporating audio assets into the stream. There can be multiple audiotracks for each project and they determine how many audio assets can play simultaneously.

Audiotracks provide the ability to aesthetically tune the audio experience by allowing administrators to control how many assets are allowed to play simultaneously, how frequently assets play as well as panning and volume considerations.

Fields

 		Parameter
 		Format/Units
 		Definition
 		Notes

 		Project
 		picklist
 		which project is Audiotrack associated with
 		the number of Audiotracks created determines the highest number of assets ever played simultaneously

 		Maxvolume
 		float
 		upper value for range of randomized volume attenuation to be applied to each asset when played back in stream
 		1.0 means no attenuation from original volume of source material. A range of 0.0-1.0 would mean each asset would be attenuated somewhere between silence and full source volume

 		Minvolume
 		float
 		Upper value for range of randomized volume attenuation to be applied to each asset when played back in stream
 		

 		Minduration
 		integer/nanoseconds
 		minimum length of time each asset in Audiotrack will play
 		assets with shorter lengths than this value will be played in the entirety every time

 		Maxduration
 		integer/nanoseconds
 		maximum length of time each asset in Audiotrack will play
 		assets longer than this value will never be played in entirety

 		Mindeadair
 		integer/nanoseconds
 		minimum length of pause between consecutive assets in Audiotrack
 		if set to 0, assets can play with no pause between them

 		Maxdeadair
 		integer/nanoseconds
 		maximum length of pause between consecutive assets in Audiotrack
 		RW randomly chooses a value between Min and Max deadair each time a new assets is selected to play in the stream

 		Minfadeintime
 		integer/nanoseconds
 		minimum length of time over which an asset fades in at the beginning of playback from 0 volume to its max volume (determined by Max/Minvolume values)
 		

 		Maxfadeintime
 		integer/nanoseconds
 		maximum length of time over which an asset fades in from 0 volume to its max volume (determined by Max/Minvolume values)
 		

 		Minfadeouttime
 		integer/nanoseconds
 		minimum length of time over which an asset fades out at the end of its playback from its max volume (determined by Max/Minvolume values) to 0 volume
 		

 		Maxfadeouttime
 		integer/nanoseconds
 		maximum length of time over which an asset fades out from its max volume (determined by Max/Minvolume values) to 0 volume
 		

 		Min Pan Position
 		float
 		furthest left position in stereo field to which asset can be panned automatically
 		-1.0 is hard pan left; 1.0 is hard pan right

 		Max Pan Position
 		float
 		furthest right position in stereo field to which asset can be panned automatically
 		to turn off panning, set both min/max pan positions to the same value. this will enforce every asset to remain at that value for its entire playback

 		Min Pan Duration
 		integer/nanoseconds
 		minimum length of time asset will be automatically panned between two randomly selected pan positions within the pan range defined by min/max pan position
 		assets are continually panned during playback. as soon as one pan ramp completes, a new one is calculated and begun.

 		Max Pan Duration
 		integer/nanoseconds
 		maximum length of time asset will be automatically panned between two randomly selected pan positions within the pan range defined by min/max pan position
 		

 		Repeat Recordings
 		boolean
 		determines whether or not recordings can be played more than once sans server receiving a modify_stream request
 		

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/setup/project.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Project”
sidebar_current: “setup-project”

Project

 DEFINITION: The highest level of segmentation/grouping for all RW data. One RW instance can run many projects simultaneously, governed by CPU, bandwidth and memory resources.

Fields

 		Parameter
 		Format/Units
 		Definition
 		Notes

 		name
 		string
 		full name of project
 		

 		latitude/longitude
 		float
 		defines the central physical location of the project
 		used for things like centering a map display of all voices in a project

 		Date published
 		datetime
 		indicates when project was created in the database
 		

 		Audio format
 		string (mp3, ogg)
 		default audio format of streams generated for project
 		stream format can be changed on a case-by-case basis by the client including the ‘audio_format’ parameter for request_stream

 		Auto submit
 		boolean
 		default behavior for incoming assets
 		If Y, assets are assigned submitted=Y automatically, if N, submitted=N. This is related to geography so that if an asset is out of range, it will not be submitted automatically regardless of this setting. Also, the submitted parameter in add_asset_to_envelope will override this default

 		Max recording length
 		integer/seconds
 		max time participant can record for in single recording
 		typically fed to recording countdown display on client

 		Listen questions dynamic
 		boolean
 		whether or not Listen questions will change based on location of speaker
 		

 		Speak questions dynamic
 		boolean
 		whether or not Speak questions will change based on location of speaker
 		

 		Out of range url
 		string/url
 		mountpoint for static stream to be played by client if client is out of range
 		only applicable when geo_listen enabled

 		Recording radius
 		integer/meters
 		radius of circular area around asset lat/lon within which recording is active ie can be heard
 		eventually this will be over-ridden for individual assets by the ‘radius’ field in the asset table

 		Listen enabled
 		boolean
 		does project allow for clients to listen to streamed audio from server?
 		

 		Geo listen enabled
 		boolean
 		does audio stream from server change based on location of client?
 		

 		Speak enabled
 		boolean
 		does project allow for clients to capture audio from participants and upload to server?
 		

 		Geo speak enabled
 		boolean
 		does project require lat/lon values for each asset submitted?
 		

 		Reset tag defaults on startup
 		boolean
 		determines whether or not the client will reset all tag selections for the default values (received in get_tags) each time the app is started. If N, clients will store the most recent tag selections and re-present those upon startup
 		

 		Repeat mode
 		picklist
 		stop: after playing all available recordings (round robin) in audio stream, no more recordings will play
 continuous: after playing all available recordings, server will start over and randomly play all available recordings again (round robin)

 We will add more repeat modes in the future to give more options.
 		

 		Sharing message loc
 		string
 		localized versions of the message used by the social sharing mechanism on the clients. Typically, this message will end with the url to the asset sharing page and the client will append the asset_id of the asset being shared
 		

 		Out of range message loc
 		string
 		localized versions of the message sent to the client when a user tries to access the system from out of range.
 Typically will outline the differences in client behavior based on being out of range (ie. “you will hear a static stream of audio rather than a dynamic stream”)
 		

 		Legal agreement loc
 		string
 		localized version of the legal agreement participants must click through in order to make and upload assets to the system
 		

source/docs/setup/language.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Languages”
sidebar_current: “setup-language”

Language

If localization of Roundware instance is desired, all available languages need to be entered into the languages table. Standard ISO language codes are used:

http://en.wikipedia.org/wiki/ISO_639-1

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/setup/speaker.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Speakers”
sidebar_current: “setup-speaker”

Speaker

 DEFINITION: A geo-located object that continuously broadcasts audio within a specified area.

Every project - even if geo_listen is not enabled - must have at least one active speaker in order to generate audio streams. If geo_listen=N, the latitude, longitude and radius of the speaker are ignored, but if geo_listen=Y, then the latitude, longitude and radius determine where in the physical world the audio associated with the speaker can be heard.

Fields

 		Parameter
 		Format/Units
 		Definition
 		Notes

 		Project
 		picklist
 		which project is Speaker associated with
 		

 		Activeyn
 		boolean
 		active/inactive
 		

 		Code
 		string
 		short code to remember which speaker is which
 		particularly useful in projects with lots of speakers

 		Latitude/Longitude
 		float
 		central point of speaker range
 		

 		Maxdistance
 		integer/meters
 		distance from speaker center point at which volume is attenuated to Minvolume
 		generally speaking, volume attenuates as listeners get further and further from the center point of the speaker, though there is no reason this needs to always hold true

 		Mindistance
 		integer/meters
 		distance from speaker center point at which volume begins to attenuate from Maxvolume towards Minvolume
 		all points closer to the center of the speaker range than Mindistance will have volume Maxvolume

 		Maxvolume
 		float
 		highest volume level, typically at the center of a speaker’s range
 		1.0 means no attenuation from original volume of source material

 		Minvolume
 		float
 		lowest volume level; in effect at all distances greater than Maxdistance
 		

 		Uri
 		string/url format
 		mountpoint of audio to be played in association with speaker
 		

 		Backupuri
 		string/url format
 		mountpoint of audio to be played in association with speaker if primary Uri is not accessible for any reason
 		useful when primary uri is a live generated stream which has a higher failure rate

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/setup/testing.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Settings”
sidebar_current: “setup-settings”

Testing Your Setup

In order to verify that you have set things up properly, here are a few sample urls to test certain setup/config items. Make sure to substitute the proper server url.

If you see the expected JSON responses, that is a very good sign. If not, you’ll hopefully see some useful debugging information to help track down the problem.

Project verification

http://localhost:8888/api/1/?&operation=get_config&project_id=1

Tag verification

http://localhost:8888/api/1/?&operation=get_tags&project_id=1

Stream generation verification

http://localhost:8888/api/1/?&operation=request_stream&session_id=1234&latitude=1.0&longitude=2.0&tags=1,2,3

Make sure that you can actually listen to the stream_url returned and that it contains the speaker audio as well as any audio assets expected.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/setup/asset.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Assets”
sidebar_current: “setup-asset”

Asset

 DEFINITION: An individual piece of media contributed by a user or administrator. Roundware currently handles audio, photo and text assets and will soon handle video assets as well. Assets are assigned many pieces of metadata, including a project, tags, location, and others.

Fields

 		Parameter
 		Format/Units
 		Definition
 		Notes

 		Mediatype
 		picklist
 		what type of media?
 		options are: audio, video, photo, text, though video is still under development

 		Media Display
 		audio player
 		allows for playback of audio
 		only present for assets of mediatype=audio

 		File
 		binary file
 		actual media file of asset
 		currently this field should not be edited via the admin as it does not function properly

 		Volume
 		float
 		asset-specific volume attenuation; 1.0 = no attenuation
 		this can be used to compensate if the recording level of an asset is particulary high or low

 		Audio File Length
 		nanoseconds
 		length of the audio recording
 		Gstreamer uses nanoseconds as units, to Roundware does as well

 		Description
 		text
 		descriptive info for an asset; can be private or displayed in the client if desired
 		

 		Loc Description
 		multi-select
 		localized descriptive info
 		

 		Project
 		picklist
 		every asset is assigned to a Project
 		

 		Language
 		picklist
 		uses the standard Roundware localization functions
 		audio asset playback in streams is determined by the language setting of the client device with a default of English

 		Session
 		integer
 		session during which the asset was recorded and uploaded
 		if asset uploaded via the Admin, the session id defaults to -10 (or whatever value is specified in settings.py

 		Created
 		datetime
 		time stamp when the asset record was created
 		

 		Weight
 		picklist
 		prioritization value to determine order of playback within stream when using 'by_weight' ordering
 		this value is ignored in the standard 'random' ordering scenario

 		Submitted
 		boolean
 		whether or not the asset is active in the system
 		this is a useful way of keeping assets in the system while not having them used in playback

 		Tags
 		multi-select
 		tag metadata assignments for asset
 		

 		Latitude/Longitude
 		float
 		location of asset in the real world
 		

 		Related Envelope
 		picklist
 		assets are associated with an envelope, allowing for them to be grouped together
 		

 		Votes
 		inline
 		votes collected from users pertaining to asset
 		typical vote types are 'like', 'flag', or 'rating'

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/setup/settings.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Settings”
sidebar_current: “setup-settings”

Settings

Django is configured using a settings file which we store in ~/roundware-server/roundware/settings/common.py. We have consolidated Roundware-specific settings into this file as well to keep them all together. It is highly recommended that you create a local settings file ~/roundware-server/roundware/settings/local.py in which to store settings specific to your environment, passwords, etc.

Here is a list of the most critical settings parameters that are specific to Roundware:

Roundware-specific Settings

 		Parameter
 		Default Value
 		Notes

 		ICECAST_PORT
 		8000
 		set to port which Icecast uses to broadcast streams; must correspond to the listen-socket port in /etc/icecast2/icecast.xml

 		ICECAST_HOST
 		localhost
 		set to host address where Icecast streams will be accessible to the RW clients

 		ICECAST_USERNAME
 		admin
 		must correspond to username setup in /etc/icecast2/icecast.xml

 		ICECAST_PASSWORD
 		roundice
 		must correspond to password setup in /etc/icecast2/icecast.xml

 		MASTER_VOLUME
 		3.0
 		overall stream volume attenuation

 		HEARTBEAT_TIMEOUT
 		200
 		number of seconds after which a stream will be destroyed and cleaned up if it hasn't received a heartbeat or other message

 		EXTERNAL_HOST_NAME_ WITHOUT_PORT
 		localhost
 		host for client access to Icecast streams

 		DEMO_STREAM_CPU_LIMIT
 		50.0
 		When cpu usage on machine rises above this value, new clients receive the demo stream instead of a new unique stream. This helps prevent performance degradation in times of significant usage.

 		ALLOWED_AUDIO_MIME_TYPES
 		'audio/x-wav', 'audio/wav', 'audio/mpeg', 'audio/mp4a-latm', 'audio/x-caf', 'audio/mp3'
 		audio file types allowed for upload

 		ALLOWED_IMAGE_MIME_TYPES
 		'image/jpeg', 'image/gif', 'image/png', 'image/pjpeg'
 		image file types allowed for upload

 		ALLOWED_TEXT_MIME_TYPES
 		'text/plain', 'text/html', 'application/xml'
 		text file types allowed for upload

 		DEFAULT_SESSION_ID
 		-10
 		session_id assigned to any assets uploaded via the admin interface. Session with this id must exist in the session table.

 		ANONYMOUS_USER_ID
 		1
 		id of anonymous user for use by Django Guardian

 		EMAIL_HOST
 		smtp.example.com
 		SMTP server of email used for notifications

 		EMAIL_HOST_USER
 		email@example.com
 		username of email used for notifications

 		EMAIL_HOST_PASSWORD
 		password
 		passwork of email used for notifications

 		EMAIL_PORT
 		587
 		

 		EMAIL_USE_TLS
 		True
 		

 		DATABASES: NAME
 		roundware
 		name of the roundware database

 		DATABASES: USER
 		round
 		main database user

 		DATABASES: PASSWORD
 		round
 		

 		ALLOWED_HOSTS
 		*
 		hosts from which users can login; should be restricted on production systems

Django Settings

Other settings found in the default settings file are primarily Django-specific and can be adjusted as needed, referring to the Django documentation [http://djangoproject.org/docs].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/tags/data.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Tags Data Field”
sidebar_current: “tags-data”

Tags Data Field

The rw_tag.data field can be used for many purposes. Right now, its primary use is to assign html classes to tags for display purposes in the tag webviews.

We would like to expand the data field to consisting of a flexible set of key/value pairs that would be returned in get_tags as a JSON node. This expandability will provide much more utility and should make it simpler to manage than a text field.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/tags/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Tags”
sidebar_current: “tags”

Roundware Tags

One of the powerful features of Roundware is its tagging capability. Tags are used to assign
metadata to assets, primarily for filtering, but also for archival purposes. Roundware tags
are grouped by tag_category, for example, the tags young and old could be tags within the age tag_category.

Tags and tag categories are very flexible and can be setup however makes the most sense for a project. Each asset within a project
should be assigned at least one tag from each available tag category for the project in order for the
filtering to work properly.

Tags are initially assigned to assets when they are added to the system, either through the admin or by a participant via a client.
Tags can be edited thereafter, of course, using the admin. Participants select a tag from each tag category
as part of the contribution process. It is advisable to not require participants to select too many
tags for their contributions, so most Roundware projects have between 2-3 tag categories.

Also see more info on Tag Setup and Tag Admin.

Tag Filtering

Since tags are grouped by tag_category, the filtering mechanism becomes slightly more complex than a
simple AND or OR filter of tag ids.

		Within each tag_category, filters work as an OR filter such that any asset tagged with any one of the
tag ids passed is included.

		Between the represented tag_categories, filtering is done with an AND filter.

		Any tag_category not represented by any of the tag ids present in the request will be ignored entirely such
that no further filtering occurs per that tag_category.

Example

Let’s say we have three tag categories and respective tag ids: gender [tag ids 1, 2], age [tag ids 3, 4], and question [tag ids 5, 6].
And we have two assets:

Asset A - tag ids 1, 3, 5

Asset B - tag ids 2, 4, 5

 		Tag id parameters
 		Boolean interpretation
 		Assets returned
 		Notes

 		1, 3, 4, 5, 6
 		1 AND (3 OR 4) AND (5 OR 6)
 		B
 		even though B contains tag ids 4 and 5, since it doesn't include tag id 1, it is filtered out

 		1, 4, 5
 		1 AND 4 AND 5
 		NONE
 		no assets are returned despite the fact that assets exist with each of the individual tags passed;
 one from each tag category is not matched in any available asset, hence nothing returned

 		1, 2, 3, 4, 6
 		(1 OR 2) AND (3 OR 4) AND 6
 		NONE
 		neither A nor B contain tag id 6, so nothing is returned

 		1, 2, 3, 4
 		(1 OR 2) AND (3 OR 4)
 		A, B
 		question tag category is ignored entirely as no tag id in the category was passed

Tag Relationships

Tags can be related to each other in order to create tag hierarchies. For example, say there is a project with two
tag categories:

demographic: child adult

question: What college did you attend? Why is there food all over your face? Make up a story.

You want to ask adults about college and stories, but not food, and you want to ask kids about food and stories, but not college.
You can use tag relationships to link the child tag to Why is there food all over your face? and Make up a story. and
the adult tag to What college did you attend? and Make up a story. This will cause the user interface to present a different
set of questions depending on which demographic is chosen. Obviously, one must ensure that the ordering of the tag categories
is set properly so that demographic is presented to the user prior to question.

Tag Data

The tag.data field is a temporary field. Currently, it is
being used to set the html class of the tag for display in the tag webviews, for example class=tag-one.

We intend to expand the tags data from a field into a new tag_data model such that an arbitrary number of additional
pieces of data can be stored with a tag. This becomes very useful for situations such as when a tag is used
to indicate an object that has a physical location (i.e. a sculpture in a sculpture park). In these situations,
tag data of types latitude and longitude could be created and used for a multitude of purposes within the
clients and back-end.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/setup/tag.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Tags”
sidebar_current: “setup-tag”

Tags

 DEFINITION: Metadata used to describe assets. Tags are arranged by tag category. For example, the tags within the 'gender' tag category could be 'male' and 'female'. Tags are very flexible and allow for collecting many different types of metadata to be used for filtering the assets at a later time.

Tags are by far the most in-depth part of the Roundware configuration. There are several steps to setting up a full complement of Tags to satisfy the needs of your Roundware implementation. Tag Categories must be setup, Tags must then be created and assigned to the proper Tag Categories and finally, various UI mapping steps need to be taken to determine how the Tags are handled by RW clients. Tags are also assigned to Modes primarily for functional organization on the client. Currently there are only two possible modes: Listen and Speak.

1. Add Tag Categories

		if category exists, there is no need to add a new one as categories can be used cross project

		the only item required for creating a Tag Category is the name; choose something short and descriptive

2. add Master UIs for UI Tag Category Management

		associate Tag Categories with Modes and Projects

		assign selection methods for each Category on a per-Mode basis

		activate/deactivate Categories on a per-Mode basis

		set the UI ordering of Categories on per-Mode basis

Create one Master UI entry for each Tag Category per Mode to make available in client UI. This adds Tag Categories to the get_tags request response so that clients can display them in their GUI. For example, if you have three Tag Categories in your project (Question, Age, Gender) and are utilizing both Listen and Speak Modes, you will want to set up a total of 6 Master UIs:

		Listen:Question

		Listen:Age

		Listen:Gender

		Speak:Question

		Speak:Age

		Speak:Gender

Fields

 		Parameter
 		Format/Units
 		Definition
 		Notes

 		Name
 		string
 		arbitrary name for Master UI
 		usually helpful to be descriptive, including Project and Category info

 		UI Mode
 		string
 		assign UI Mode
 		Listen and Speak are currently the only available Modes

 		Tag Category
 		picklist
 		assign Tag Category
 		

 		Select
 		picklist
 		choose which type of selector to be used on client:
 single (only one can be selected at a time)
 multi (any number can be selected at once, including none)
 multi_at_least_one (any number, but at least one must be selected at all times)
 		typically Listen selections are multiple and Speak are single

 		Active
 		boolean
 		turns availability of Master UI in client on and off
 		useful for removing Tag Categories from Modes to change what displays on the client without deleting anything

 		Index
 		integer
 		assign the order of the Master UIs for display on client
 		

 		Project
 		picklist
 		associate with project
 		tags and tag categories can be used on multiple projects as needed

 		Header Text Loc
 		string
 		localized text to be displayed on clients as the header for the selections ie. “What voices do you want to hear?” or “What question do you want to respond to?”
 		

3. add localized Tag names to localized strings table

		add one entry for each language you are offering for each tag name

		these strings are assigned to the actual Tags in the next step

4. create Tags and assign to Tag Categories

		this is done in the Tags table

Fields

 		Parameter
 		Format/Units
 		Definition
 		Notes

 		Tag Category
 		picklist
 		assigned tag category
 		

 		Value
 		string
 		not sure what we are going to use this for, but we probably had a good idea at some point for it
 		

 		Localized Description
 		picklist
 		name of tag itself
 		choose one value for each localization implemented

5. organize Tags into Tag Categories and Modes via UI Mappings

		assign individual tags to Modes via Master UI

		assign Tag defaults for Categories

		set UI ordering of Tags within Category

		activate/deactivate Tags on per-Mode basis

Create one UI Mapping entry for each Tag per Mode. This adds Tags to the get_tags request response so that clients can display them in their GUI.

Fields

 		Parameter
 		Format/Units
 		Definition
 		Notes

 		Master UI
 		picklist
 		this lets you assign each Tag to the proper Master UI combination of Tag Category and Mode
 		

 		Index
 		integer
 		assign the order of the Tags within each Tag Category for display on client
 		

 		Tag
 		picklist
 		assign Tag
 		

 		Default
 		boolean
 		assign default values for each Tag Category on per-Mode basis
 		request_stream will generate streams using the default values, so typically all Tags are assigned as Listen Mode defaults. Speak Mode would normally have no Tags assigned as defaults.

 		Active
 		boolean
 		turns availability of Tag in client on and off useful for deactivating a Tag if it is no longer needed for future use, but is wanted to be retained for assets already tagged.
 		

 		Tag Category
 		picklist
 		assigned tag category
 		

Phew, you’re done!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/setup/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Setup”
sidebar_current: “setup”

Setup Overview

Once installed, Roundware can be configured in many different ways for a variety of different purposes. This section of the documentation outlines the basic elements that require setup/configuration in order to get a Roundware instance up and running post-installation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/setup/mode.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Modes”
sidebar_current: “setup-mode”

Modes

 DEFINITION: Modes are the basic functionalities that a Roundware instance provides. Currently, Roundware only handles audio, so there are two available modes, one for consuming audio streams (Listen) and one for contributing audio recordings (Speak). In the future when more media types are added to Roundware such as video, photos and text, new modes will need to be added for consuming and contributing assets of those media types. The Mode concept is primarily used to help organize and assign tags in the client.

Roundware comes pre-configured with the two standard Modes: Listen and Speak. You can extend the functionality by adding new Modes as needed.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/api/add_asset_to_envelope.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “add_asset_to_envelope”
sidebar_current: “api-add-asset-to-envelope”

add_asset_to_envelope

This API call uploads a media asset to the Roundware server, creates a new record in
the rw_asset table and creates a relationship between the asset and a pre-existing envelope
record. In the case of audio assets, this call also triggers conversion of the audio file into
all required formats (mp3, wav) and calculates the length of the audio which it stores
in rw_asset.audiolength.

Example Call:

http://localhost:8888/api/1/?operation=add_asset_to_envelope&envelope_id=1&latitude=23.3456&longitude=-88.3456&tags=153,157&mediatype=photo

Parameters (some optional*):

		envelope_id

		file

		mediatype*

		latitude*

		longitude*

		tags*

		submitted*

envelope_id

id for envelope record in database created previously (most likely by create_envelope) in
preparation for asset to be uploaded.

file

binary file data for media asset to be uploaded

Stored in MEDIA_ROOT directory on file system, as set in Django settings: roundware/settings/common.py

mediatype

OPTIONAL: Options are: audio photo text. Default is audio if none provided.

latitude

OPTIONAL: Latitude of asset

Stored in rw_asset.latitude

longitude

OPTIONAL: Longitude of asset

Stored in rw_asset.longitude

tags

OPTIONAL: Comma-separated list of tag_ids to be assigned to the asset

Stored in rw_asset_tags many to many table

submitted

OPTIONAL: Format is submitted=Y or submitted=N. This can be used to over-ride the server-side code that automatically determines whether or not an asset is marked as submitted.

The server determines the rw_asset.submitted value based on these cascading checks:

		if submitted parameter is passed in add_asset_to_envelope request, use that value

		if not, then check if asset is within range of project as determined by being within 2x the radius distance
from any active speaker assigned to the project.

		if within range, set rw_asset.submitted to default value provided in rw_project.auto_submit

		if outside of range set rw_asset.submitted to false

Response

The server responds with a success boolean and the asset_id of the newly created asset.

Example Response

{
 "success": True,
 "asset_id": 17
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/api/heartbeat.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “heartbeat”
sidebar_current: “api-heartbeat”

heartbeat

Tells the server the client is still listening. The Roundware server will clean up streams that are not listened to
for a certain amount of time (set using the heartbeat_timeout parameter in the config file /etc/roundware/rw) in
order to efficiently use server resources. In situations where a client wants to keep a stream alive for longer than
heartbeat_timeout without actually listening to the stream, the heartbeat API call can be sent at intervals shorter
than heartbeat_timeout to keep the stream alive indefinitely. This is useful when a user is making a recording or
pauses the audio stream.

Example Call:

http://localhost:8888/api/1/?operation=heartbeat&session_id=1

Parameters (some optional*):

		session_id

session_id

session_id determines which stream to apply the heartbeat to.

Response

JSON response is success boolean, indicating that the heartbeat was properly acknowledged by the server

Example Response

{"success": true}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/other/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Other”
sidebar_current: “other”

Other

This section covers other information that doesn’t quite fit under the
other categories. Please see the navigation to the left.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/architecture/index.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “Architecture”
sidebar_current: “architecture”

Roundware Architecture

Overview

Roundware provides a set of web service APIs to support location-based listening and visitor submission of media assets. The architecture, outlined in the diagram below, depicts the different elements in a Roundware deployment.

		Apache Server: fields all incoming web requests and passes them to a running Roundware server via FCGI.

		Roundware:

		roundware Python module: built on Django, the Roundware python module fields all incoming requests and provides data administration functionality.

		roundwared Python module: the low-level Roundware protocol implementation, the roundwared module provides the nuts and bolts of stream creation, dbus interaction and database interaction.

		dbus: a message bus system which is a standard part of the Linux kernel.

		mysql: data store, exposed through the Roundware python module via Django.

		icecast: open-source audio streaming software used by most internet radio stations among other things

Diagram

[image: Roundware Architecture]

Message Flow

To illustrate interaction with the pieces mentioned above, we’ll narrate through a request stream and modify stream call, updating the location of the listener.

		An incoming request stream call is marshaled from roundware to roundwared. Roundwared looks up some session-specific data, then forks a process and starts the streamscript.

		Streamscript constantly streams audio to icecast, which provides an outgoing stream to an individual listener. At the same time, streamscript receives incoming messages from roundware/roundwared over dbus to update location and listener preferences, which are reflected dynamically in the outgoing stream.

		An incoming modify stream call is marshalled from roundware to roundwared, which here includes new location information (lat, lon) for a listener. The streamscript instance for this particular listener (identified by session_id) is sent the updated location info via a dbus message, at which point the content streamed to icecast is modified according to the updated location.

Further Explanation

The Roundware architecture is essentially this: a web service is called, forks a process which generates audio; this audio is sent to an icecast server; the process reads continuously from the database, the file system for audio, and makes calls to the icecast admin page while sending its audio stream. It also checks dbus messages for updates of various filters (tags and location) which are incoming from the web service.

Stream Object:

Let’s start from the RoundStream class, located in stream.py. The stream class accepts a session_id, a media format, and a request on startup.

The session_id is the ID that has been created to identify the stream. The stream has to know which stream it is for several reasons. One is that it should report which stream it is when making important log entries, like when it is closing down. Two is that it’s used when the stream creates an icecast client connection to stream its output to. It bases the URL it creates on the session_id. Finally every stream needs a session_id so that we may find the proper stream to send updates to when they are updated.

Creation:

The stream is created by instantiating the object. Walking backwards from there it’s the streamscript that instantiates a stream and then becomes a background process. You can run this script with the arguments on the command line just to make a stream. This is a great debugging tool, especially when used in foreground mode. Walking backward from there, the streamscript, in actual production code, is run from a web service which accepts the arguments via POST or GET.

So, basically, you call a web service with a bunch of arguments, they are turned into command line arguments, and passed to a script that is forked off. The web service terminates, sending back the session_id and URL of the stream and the forked process plays the audio to icecast.

With that data, the stream is created. The stream pulls from two major sources on creation. It pulls audiotracks from the database and also speakers. Audiotracks are where the recordings are played and speakers are where the background audio is played. All the speakers and audiotracks/recordings are pulled together and mixed (in the audio sense) in an adder (a gstreamer object) then it’s sent to a sink specialized for Roundware that encodes it to the right format and sends it to the icecast server.

Cleanup:

A stream sets up a periodic check to see if anyone is listening and also checks the last time there was any stimulus sent to the stream. If it’s been a long enough time without anyone listening or sending stimulus to the stream, the stream cleans itself up and closes down. The stimulus can be an update to the request, a change in location, or a heartbeat, which is a special kind of stimulus meant only to trigger an update to the last time a stimulus was seen so the stream doesn’t die.

Updates:

Updates are done using dbus for interprocesses communication. Remember that the stream is a forked process, running independently on the server, and sending its audio to icecast. It checks itself for whether or not it should be cleaned up. So it’s fully separated. It sets up a listener for a dbus socket and listens for messages pertaining to its session_id as well. When the client calls a web service to update a stream, it passes the arguments and the session_id. This gets turned into a dbus broadcast and the streams pick it up. If the session_id matches for a stream, that stream acts on the update, and the other streams ignore the message. This dbus listener is setup by the streamscript right after the stream is instantiated.

This is the basic structure of the listening system. There’s a lot of depth to how recordings are played, chosen, faded, panned, and a lot of nitty gritty about gstreamer low-level stuff. These things are fairly well encapsulated and able to be understood in isolation. The icecast admin is used for checking on the stream’s activity/existence, the speakers mixer based on geolocation, the audiotracks playing the assets, which assets playing in the recording collection, the sink that sends the data to the icecast are all separate modules of classes that the stream relies on and you can dive deeper into whichever part you need to understand better.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/api/get_tags.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “get_tags”
sidebar_current: “api-get-tags”

get_tags

Example Call:

http://localhost:8888/api/1/?operation=get_tags&project_id=1&session_id=1234

This is typically the second command a Roundware client sends to the Roundware server.
It is used to configure the tag webviews for both Listen and Speak functionalities.

Parameters (some optional*):

		project_id

		session_id*

project_id

id from the database for the project that the client wishes to interact with and
for which it is built.

session_id

OPTIONAL: session_id can be included if you are localizing your Roundware project.
The session table includes language_id rw_session.language_id which tells RW what
localized strings to return for the tags.

Response

JSON response is broken into sections for listen and speak at the top level, allowing tags
and tag metadata to be different for each mode. Beneath that, there are nodes for each tag category
and then the tags themselves.

get_tags response is governed by the ui_group and ui_item objects.

Example Response

{
 "listen": [
 {
 "code": "gender",
 "defaults": [
 3,
 4
],
 "header_text": "",
 "name": "Select gender(s)",
 "options": [
 {
 "data": "class=tag-one",
 "description": "male",
 "loc_description": "",
 "order": 1,
 "relationships": [
 1,
 2,
 3,
 4,
 5,
 6
],
 "shortcode": "male",
 "tag_id": 3,
 "value": "male"
 },
 {
 "data": "class=tag-one",
 "description": "female",
 "loc_description": "",
 "order": 1,
 "relationships": [
 1,
 2,
 3,
 4,
 6,
 7
],
 "shortcode": "female",
 "tag_id": 4,
 "value": "female"
 }
],
 "order": 1,
 "select": "multi"
 },
 {
 "code": "age",
 "defaults": [
 1,
 2
],
 "header_text": "",
 "name": "Select age(s)",
 "options": [
 {
 "data": "class=tag-one",
 "description": "young",
 "loc_description": "",
 "order": 1,
 "relationships": [
 1,
 2,
 3,
 4,
 5,
 6,
 7
],
 "shortcode": "young",
 "tag_id": 1,
 "value": "young"
 },
 {
 "data": "class=tag-one",
 "description": "old",
 "loc_description": "",
 "order": 2,
 "relationships": [
 1,
 2,
 3,
 4,
 5,
 6,
 7
],
 "shortcode": "old",
 "tag_id": 2,
 "value": "old"
 }
],
 "order": 2,
 "select": "multi"
 },
 {
 "code": "question",
 "defaults": [
 5,
 6,
 7
],
 "header_text": "",
 "name": "What topics do you want to listen to?",
 "options": [
 {
 "data": "class=tag-two",
 "description": "What do you remember?",
 "loc_description": "",
 "order": 1,
 "relationships": [
 1,
 2,
 3,
 5,
 6,
 7
],
 "shortcode": "remember",
 "tag_id": 5,
 "value": "What is your favorite memory?"
 },
 {
 "data": "class=tag-two",
 "description": "What did you eat today?",
 "loc_description": "",
 "order": 2,
 "relationships": [
 1,
 2,
 3,
 4,
 5,
 6,
 7
],
 "shortcode": "eat",
 "tag_id": 6,
 "value": "What did you eat today?"
 },
 {
 "data": "class=tag-two",
 "description": "What is favorite place to visit?",
 "loc_description": "",
 "order": 3,
 "relationships": [
 1,
 2,
 4,
 5,
 6,
 7
],
 "shortcode": "place",
 "tag_id": 7,
 "value": "What is your favorite place to visit?"
 }
],
 "order": 3,
 "select": "multi"
 }
],
 "speak": [
 {
 "code": "gender",
 "defaults": [],
 "header_text": "",
 "name": "What gender are you?",
 "options": [
 {
 "data": "class=tag-one",
 "description": "male",
 "loc_description": "",
 "order": 1,
 "relationships": [
 1,
 2,
 3,
 4,
 5,
 6
],
 "shortcode": "male",
 "tag_id": 3,
 "value": "male"
 },
 {
 "data": "class=tag-one",
 "description": "female",
 "loc_description": "",
 "order": 2,
 "relationships": [
 1,
 2,
 3,
 4,
 6,
 7
],
 "shortcode": "female",
 "tag_id": 4,
 "value": "female"
 }
],
 "order": 1,
 "select": "single"
 },
 {
 "code": "age",
 "defaults": [],
 "header_text": "",
 "name": "Choose your age",
 "options": [
 {
 "data": "class=tag-one",
 "description": "young",
 "loc_description": "",
 "order": 1,
 "relationships": [
 1,
 2,
 3,
 4,
 5,
 6,
 7
],
 "shortcode": "young",
 "tag_id": 1,
 "value": "young"
 },
 {
 "data": "class=tag-one",
 "description": "old",
 "loc_description": "",
 "order": 2,
 "relationships": [
 1,
 2,
 3,
 4,
 5,
 6,
 7
],
 "shortcode": "old",
 "tag_id": 2,
 "value": "old"
 }
],
 "order": 2,
 "select": "single"
 },
 {
 "code": "question",
 "defaults": [],
 "header_text": "",
 "name": "Choose a question",
 "options": [
 {
 "data": "class=tag-two",
 "description": "What do you remember?",
 "loc_description": "",
 "order": 1,
 "relationships": [
 1,
 2,
 3,
 5,
 6,
 7
],
 "shortcode": "remember",
 "tag_id": 5,
 "value": "What is your favorite memory?"
 },
 {
 "data": "class=tag-two",
 "description": "What did you eat today?",
 "loc_description": "",
 "order": 2,
 "relationships": [
 1,
 2,
 3,
 4,
 5,
 6,
 7
],
 "shortcode": "eat",
 "tag_id": 6,
 "value": "What did you eat today?"
 },
 {
 "data": "class=tag-two",
 "description": "What is favorite place to visit?",
 "loc_description": "",
 "order": 3,
 "relationships": [
 1,
 2,
 4,
 5,
 6,
 7
],
 "shortcode": "place",
 "tag_id": 7,
 "value": "What is your favorite place to visit?"
 }
],
 "order": 3,
 "select": "single"
 }
]
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/api/get_available_assets.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “get_available_assets”
sidebar_current: “api-get-available-assets”

get_available_assets

Returns information about assets per a set of passed filters such that they can be accessed individually by clients.
This API call is very flexible and is useful for numerous pieces of functionality given the large number
of optional filtering parameters available.

Example Call:

http://localhost:8888/api/1/?operation=get_available_assets&project_id=3&tagids=26,36&tagbool=and&latitude=47.654139&longitude=-122.335914&radius=500

Parameters (some optional*):

		project_id

		mediatype*

		envelope_id*

		asset_id*

		language*

		latitude*

		longitude*

		radius*

		tagids*

		tagbool*

project_id

This call works on a per-project basis. Including no other filtering parameters will simply return all
assets that exist for the indicated project.

mediatype

OPTIONAL: Filter assets by mediatype. Options are audio, photo, text.

envelope_id

OPTIONAL: Return all assets in a particular envelope or list of envelopes as passed in comma-delimited list.

asset_id

OPTIONAL: Return a single asset or set of assets as passed in comma-delimited list.

language

OPTIONAL: Passed in 2-character ISO language format (i.e. ‘en’, ‘es’, ‘fr’ etc). The language parameter does not operate as a filter, but rather selects the language of the localized strings to be returned. This isn’t consistent with the other parameters,
so it may need to be changed to behave more like a filter depending on what future use cases emerge.

latitude

OPTIONAL: in combination with longitude and radius, this will return assets that are contained in the
defined geographic region

longitude

OPTIONAL: in combination with latitude and radius, this will return assets that are contained in the
defined geographic region

radius

OPTIONAL: in combination with latitude and longitude, this will return assets that are contained in the
defined geographic region

tagids

OPTIONAL: Returns assets related to a comma-delimited list of tag_ids.

tagbool

OPTIONAL: If set to ‘and’, only assets that contain ALL tags indicated in the tagids parameter will be returned.
If set to ‘or’, assets that contain ANY of the tagids indicated in the tagids parameter will be returned.

Response

JSON response includes nodes for each asset matching the filters as well as a summarization node
that sums the number of assets per mediatype.

Example Response

{
 "assets": [
 {
 "asset_id": 3738,
 "asset_url": "http://rw.roundware.org/rwmedia/20130512-125336.jpg",
 "audio_length": null,
 "language": "en",
 "latitude": 1.0,
 "longitude": 1.0,
 "project": "Will to Adorn",
 "submitted": true,
 "tags": [
 {
 "localized_value": "Exemplar",
 "tag_category_name": "usertype",
 "tag_id": 62
 },
 {
 "localized_value": "What are you wearing today?",
 "tag_category_name": "question",
 "tag_id": 66
 },
 {
 "localized_value": "West",
 "tag_category_name": "region",
 "tag_id": 70
 }
]
 },
 {
 "asset_id": 3739,
 "asset_url": "http://rw.roundware.org/rwmedia/20130512-125343.jpg",
 "audio_length": null,
 "language": "en",
 "latitude": 1.0,
 "longitude": 1.0,
 "project": "Will to Adorn",
 "submitted": true,
 "tags": [
 {
 "localized_value": "Exemplar",
 "tag_category_name": "usertype",
 "tag_id": 62
 },
 {
 "localized_value": "What are you wearing today?",
 "tag_category_name": "question",
 "tag_id": 66
 },
 {
 "localized_value": "West",
 "tag_category_name": "region",
 "tag_id": 70
 }
]
 },
 {
 "asset_id": 3740,
 "asset_url": "http://rw.roundware.org/rwmedia/20130512-125349.txt",
 "audio_length": null,
 "language": "en",
 "latitude": 1.0,
 "longitude": 1.0,
 "project": "Will to Adorn",
 "submitted": true,
 "tags": [
 {
 "localized_value": "Exemplar",
 "tag_category_name": "usertype",
 "tag_id": 62
 },
 {
 "localized_value": "What are you wearing today?",
 "tag_category_name": "question",
 "tag_id": 66
 },
 {
 "localized_value": "West",
 "tag_category_name": "region",
 "tag_id": 70
 }
]
 },
 {
 "asset_id": 3741,
 "asset_url": "http://rw.roundware.org/rwmedia/20130512-125357.wav",
 "audio_length": 12097596372,
 "language": "en",
 "latitude": 1.0,
 "longitude": 1.0,
 "project": "Will to Adorn",
 "submitted": true,
 "tags": [
 {
 "localized_value": "Exemplar",
 "tag_category_name": "usertype",
 "tag_id": 62
 },
 {
 "localized_value": "What are you wearing today?",
 "tag_category_name": "question",
 "tag_id": 66
 },
 {
 "localized_value": "West",
 "tag_category_name": "region",
 "tag_id": 70
 }
]
 }
],
 "number_of_assets": {
 "audio": 1,
 "photo": 2,
 "text": 1,
 "video": 0
 }
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source/docs/api/rest.html.html

 Navigation

 		
 index

 		Roundware latest documentation »

page_title: “rest”
sidebar_current: “api-rest”

REST API

We have partially implemented a REST API in order to have a fully RESTful and flexible alternative
API for database interactions. We anticipate this being very useful for many future purposes,
but for now, only some basics are in place.

Example Calls:

Assets

This call returns information about assets and can be filtered by many parameters, including
project_id, mediatype, created date range and audiolength.

http://localhost:8888/api/1/rest/asset/?created__lte=2014-02-01&mediatype=audio&submitted=true&created__gte=2014-01-01&audiolength__gte=1&project=1

Return JSON

{
 "meta": {
 "limit": 20,
 "next": null,
 "offset": 0,
 "previous": null,
 "total_count": 2
 },
 "objects": [
 {
 "audiolength": "9868480726",
 "audiolength_in_seconds": 9.87,
 "created": "2014-01-20T13:25:32",
 "description": "",
 "file": "http://localhost:8888/rwmedia/20140120-132531.m4a",
 "filename": "20140120-132531.wav",
 "id": 4404,
 "language": 1,
 "latitude": 41.003571,
 "longitude": -71.27923584,
 "mediatype": "audio",
 "project": 12,
 "resource_uri": "http://localhost:8888/api/1/rest/asset/4404/",
 "session": 14161,
 "submitted": true,
 "volume": 1.0,
 "weight": 50
 },
 {
 "audiolength": "25843809524",
 "audiolength_in_seconds": 25.84,
 "created": "2014-01-20T15:08:21",
 "description": "",
 "file": "http://localhost:8888/rwmedia/20140120-150821.m4a",
 "filename": "20140120-150821.wav",
 "id": 4405,
 "language": 1,
 "latitude": 42.4984855651855,
 "longitude": -71.2808990478516,
 "mediatype": "audio",
 "project": 12,
 "resource_uri": "http://localhost:8888/api/1/rest/asset/4405/",
 "session": 14214,
 "submitted": true,
 "volume": 1.0,
 "weight": 50
 }
]
}

Events

This call returns information about assets and can be filtered by many parameters, including
session_id, event_type and created date range.

http://localhost:8888/api/1/rest/event/?server_time__lte=2015-01-01&server_time__gte=2011-01-01&event_type=start_session&session=4892

Return JSON

{
 "meta": {
 "limit": 20,
 "next": null,
 "offset": 0,
 "previous": null,
 "total_count": 1
 },
 "objects": [
 {
 "client_time": null,
 "data": "",
 "event_type": "start_session",
 "id": 59513,
 "latitude": null,
 "longitude": null,
 "operationid": null,
 "resource_uri": "http://localhost:8888/api/1/event/59513/",
 "server_time": "2013-01-14T14:46:02",
 "session": 4892,
 "tags": "",
 "udid": null
 }
]
}

We have also implemented APIs for the Project, Session and Listening History objects.
These behave similarly.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

